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ABSTRACT

This paper presents an optimal image acquisition methodology by replacing the traditional birefringent filter
with slight out-of-focus blur generated by the camera lens. Since many cameras already have adjustable lenses
and auto-focus systems, our method can exploit existing hardware by simply changing the focusing strategy.
During the image acquisition, the optimal defocus setting is automatically adapted to the power spectrum of
the scene which is evaluated by a generic autocorrelation model. A criterion to estimate reconstruction errors
without the baseband knowledge of the scene is developed in the paper. This metric helps the camera to choose
the optimal focus settings. An optimal Wiener filter then recovers the captured scene and yields sharper images
with reduced aliasing. The numerical and visual results show that our method is superior to current acquisition
methods used by most digital cameras.
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1. INTRODUCTION

A digital camera acquires images by spatially sampling continuous scenes at each pixel location of an optical
sensor, such as a CCD or CMOS sensor. This sampling produces aliasing artifacts in the spatial domain during
the reconstruction process, where Moiré patterns and other artifacts can be observed. Most digital cameras
apply an optical anti-aliasing filter on top of the sensor using a birefringent crystal to limit these artifacts. Such
a filter has a lowpass characteristic and reduces the energy of the input scene at frequencies higher than the
Nyquist baseband of the optical sensors.

One commonly used anti-aliasing filter is the four-spot birefringent filter.1 By carefully designing the thickness
of the crystal plate, the input light beam can be separated into four beams then detected by four neighboring
photosites of the sensor. However, the frequency response of this filter is not an ideal lowpass filter but a
two-dimensional sinc function, such as in Figure 1(a). The wide transition band and the large sidelobes in the
stopband of this filter make it sub-optimal. The distortion in the baseband signal results in blurry images and
makes them less appealing. Although a follow-up image-enhancement step can reduce the baseband distortion,
it is impossible to remove the existing aliasing artifacts without some information from the original scene.
Furthermore, the thickness of the birefringent crystal is fixed by the size of the sensor cells,1 which makes it
difficult to design a compact camera.

In this paper, we consider an alternative acquisition approach without using the birefringent filter. Because
of the lowpass characteristics of out-of-focus blur, one can replace the traditional anti-aliasing filter with slight
out-of-focus blur generated by the camera lens. A blurred image is captured during the image acquisition with
the optimal focus setting found by the camera. A Wiener filter corresponding to the optimal focus setting then
recovers the captured image. Our method seeks to balance the baseband distortion and noise amplification error
and the error due to aliasing artifacts during the acquisition. One equivalent anti-aliasing filter designed by our
approach is shown in Figure 1(b). It is easy to see that it has a narrower transition band and the responses in
the baseband and stopband are close to ideal.

This paper is organized as follows. The defocus acquisition approach is presented in Section 2. The optimal
acquisition Wiener filter is defined in Section 3. The criterion to identify the optimal defocus setting is presented
in Section 4. Simulation results are reported in Section 5. Finally, we draw some conclusions and discuss our
future work in Section 6.
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(a) Birefringent filter
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(b) Proposed approach

Figure 1. Comparison of the frequency responses of the birefringent anti-aliasing filter and the proposed Wiener approach.
The horizontal and vertical frequencies have been normalized by the sampling frequency.

2. DEFOCUS ACQUISITION

In the frequency domain, let F (Ωx,Ωy) be the spectrum of a continuous scene as viewed by the camera. If
a lowpass anti-aliasing filter H(Ωx,Ωy) is applied before the camera sensor, the representation of the sampled
signal Fd(Ωx,Ωy) is as follows,

2
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1
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(1)

where Δx and Δy are sampling intervals in the horizontal and vertical directions. Let Fb be the baseband signal
of the scene. Then Fb = F for |Ωx| < 2π

Δx
and |Ωy| < 2π

Δy
, and zero otherwise, and denote this support as I.

In other word, Fb contains frequency content with frequencies smaller than the Nyquist rate. In the following
context, we assume Δx = Δy = 1 for simplicity.

It is possible to recover the baseband signal Fb without distortion and aliasing using an ideal lowpass filter
even if the continuous scene F is not bandlimited. For the non-ideal case, such as using a birefringent filter Ha,
perfect recovery of Fb is not generally possible. Instead, we seek to reconstruct an estimate F̂b to minimize the

error ε2 = E
{
‖Fb − F̂b‖2

}
. However, the diversity of real-world scenes and the appearance of noise mean that a

fixed birefringent anti-aliasing filter may not be the best choice for every scene. Consistently better results can
be obtained if we adapt the response of the anti-aliasing filter according to the scene and noise level. Because
of the lowpass characteristic of out-of-focus blur, a practical method is to automatically defocus a camera lens
with the desired blur level to bandlimit the spectrum F instead of using a fixed birefringent filter. Non-ideal
anti-aliasing filters trade off baseband distortion with aliasing. By adjusting the defocus, we seek the optimal
tradeoff between these two errors.

If we take the sensor-size effect hs into account, the corresponding baseband PSF of the anti-aliasing filter h
is a convolution of hs and out-of-focus blur ho. Our proposed imaging model can be represented by the following
equation:

y[m,n] = h[m,n] ∗ fb[m,n] + fa[m,n] + u[m,n], (2)

where y[m,n] (0 ≤ m ≤ M − 1, 0 ≤ n ≤ N − 1) is the sampled image captured by the camera, fb[m,n] is a
baseband image without any aliasing, fa[m,n] is the aliasing component filtered by the stopband response of
the blur, and u is additive noise. Note that fa[m,n] is dependent on h[m,n], but the dependence is suppressed
for notational simplicity. Here, “∗” represents a two-dimensional convolution. In practical imaging devices, the
noise u[m,n] can be modeled as a mixture of independent Gaussian noise u0[m,n] and signal-dependent noise
u1[m,n],3 expressed as the following equation:

u[m,n] = u0[m,n] + u1[m,n] (3)

= k0δ[m,n] + k1 (h[m,n] ∗ fb[m,n] + fa[m,n]) δ[m,n],
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where k0 and k1 are constants and δ[m,n] follows a standard normal distribution. The frequency representation
of this imaging model can be expressed as follows,

Y (ωm, ωn) = H(ωm, ωn)Fb(ωm, ωn) + Fa(ωm, ωn) + U(ωm, ωn). (4)

The frequency dependency is suppressed to simplify subsequent notation. The reconstructed image f̂b[m,n] will
be estimated from the acquired image y[m,n]. It is evident that this is an ill-posed problem because of the
aliasing artifact and the appearance of noise.

3. OPTIMAL ACQUISITION WIENER FILTER

To obtain the baseband estimate F̂b, a digital filter W is designed to minimize the reconstruction error ε2 =

E
{
‖Fb − F̂b‖2

}
, where F̂b = WY . Because k1 is normally small and the energy of filtered aliasing signal Fa

is much lower than baseband signal Fb, we can assume the noise U and the aliasing signal Fa are uncorrelated
with the baseband signal Fb. As a result, W becomes a Wiener filter (linear minimum mean-square error) with
the following form:

W =
H∗

|H|2 + σ2
u+Sfa

Sfb

, (5)

where Sfb is the power spectrum of the baseband signal, Sfa is the power spectrum of the aliasing component
and σ2

u is the noise variance. Here, the “∗” superscript is a conjugate operation. Apparently, we treat the aliasing
signal as a part of the noise in the Wiener filter, which will smooth out the aliasing artifacts in the captured
images. Our goal is to find an optimal focus setting frequency response Hopt with corresponding Wiener filter
Wopt that minimizes the reconstructed error ε2 for each specific continuous scene with a certain noise level.

It is obvious that we have no information about the baseband signal Fb and the aliasing signal Fa. To estimate
the unknown power spectra Sfb and Sfa , an image Y0 is initially captured with a large amount of out-of-focus
blur H0. We then assume that the aliasing component Fa is sufficiently suppressed in this image so that it can
be ignored. That is, Y0 ≈ H0Fb + U . Therefore one can derive the expected power spectrum Sfb0 from the
expected power spectrum Sy0 of the initial image as follows,

Sy0
≈ E

{
|H0Fb + U |2

}
(6)

= E
{
|H0Fb|2

}
+ σ2

u

= |H0|2 Sfb0 + σ2
u,

which when solved yields

Sfb0 ≈ Sy0
− σ2

u

|H0|2
. (7)

Using the periodogram estimate Ŝy0
= |Y0|2, we obtain:

Ŝfb0 =
|Y0|2 − σ2

u

|H0|2
. (8)

The generic autocorrelation function we chose in the paper is a general decay exponential model as follows,

Φf (x, y) = βe−
√

ax2+by2+cxy + f̄2, (9)

where β is a scale factor and f̄ is the mean of the continuous scene f . The parameters a, b and c obey the
conditions a > 0, b > 0 and |c| ≤ √

ab. To generate the power spectra of the baseband signal and the aliasing
signal using this generic model, we first obtain the observed autocorrelation function of the baseband signal by
taking an inverse Fourier transform Φb[m,n] = F−1{Ŝfb0(ωm, ωn)}. Assume that there exists a positive integer
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R which satisfies Ωfmax < min{R π
Δx

, R π
Δy

}, where Ωfmax is the highest frequency content in the continuous

scene. In other words, if the Nyquist rate is increased by a factor of R, no aliasing artifacts are introduced by
the sampling. Let ΦfR be the autocorrelation function of the observed image with the high sampling rate. We
fit the observed autocorrelation function Φb[m,n] at spatial location [mR,nR] to the autocorrelation function
ΦfR .

To simplify the fitting process, we only select data inside a spatial support Ψ from the autocorrelation
function to fit the model. The spatial region Ψ is limited to [−q, q] × [−q, q]. The parameters a, b and c can
be estimated using a closed-form solution.4 The power spectrum of the continuous scene SfR(ωm, ωn) can be
acquired by taking a Fourier transform of ΦfR [m,n]. The power spectra of the baseband signal fb and the
aliasing component fa can be estimated according to the ratio of the sampling rate R. More precisely, the
estimated power spectrum of the baseband signal Sfb(ωm, ωn) = SfR(ωm, ωn) for |ωm| < π

R and |ωn| < π
R , while

the estimated power spectrum of the aliasing signal Sfa is the remaining part of SfR multiplied by the squared
frequency response of the out-of-focus blur, then wrapped according to the ratio R.

4. FINDING THE OPTIMAL FOCUS SETTING

As discussed in Section 2, the out-of-focus blur that minimizes the reconstruction error ε2 = E
{
‖Fb − F̂b‖2

}
is

taken to be the optimal focus setting Hopt. The Wiener filter corresponding to Hopt is the optimal reconstruction
Wiener filter Wopt. However, since the baseband signal Fb is unknown, to calculate the reconstruction error
directly is impossible. Furthermore, it is impractical for a digital camera to capture a set of images with different
focus settings for the same scene while tracking the reconstruction error. An alternative approach to approximate
the reconstruction error ε is preferred.

We propose a criterion to monitor the true ε2 using an approximation ε̂2. Consider a captured image Y with
out-of-focus blur H. The expected power spectrum of the estimated baseband image F̂b can be represented by:

Sf̂b
= E

{
|F̂b|2

}
= E

{
|WY |2

}
≈ |WY |2 . (10)

Using the imaging model formulated in (4) in equation above and assuming that the aliased component and
noise are uncorrelated with the baseband signal, we can express Sf̂b

as

Sf̂b
= E

{
|W (HFb + Fa + U)|2

}
(11)

≈ E
{
|WHFb|2

}
+ E

{
|WFa|2

}
+ E

{
|WU |2

}

= |WH|2 Sfb + E
{
|WFa|2

}
+ E

{
|WU |2

}

Rearranging the equation above, we have:

E
{
|WFa|2

}
+ E

{
|WU |2

}
≈ |WY |2 − |WH|2 Sfb . (12)

Using the imaging model defined in Section 2, the true reconstruction error ε2 can be expressed as follows:

ε2 = E
{
‖Fb − F̂b‖2

}
(13)

= E
{
‖(1−WH)Fb −WFa −WU‖2

}
.

We must approximate the true reconstruction error ε2 with computable quantities. Applying (12) and again
assuming the baseband signal Fb is uncorrelated with the aliasing signal Fa and noise U , one can approximate
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(a) True reconstruction error ε2
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(b) Estimated reconstruction error ε̂2

Figure 2. Comparison of the true and estimated reconstruction error of one test scene.

the above equation as follows:

ε2 ≈ E
{
‖(1−WH)Fb‖2

}
+ E

{
‖WFa‖2

}
+ E

{
‖WU‖2

}
(14)

≈
∑
ωm∈I

∑
ωn∈I

[
|1−WH|2 Sfb + |WY |2 − |WH|2 Sfb

]

=
∑
ωm∈I

∑
ωn∈I

[(
|1−WH|2 − |WH|2

)
Sfb + |WY |2

]

=
∑
ωm∈I

∑
ωn∈I

[
(1− 2�{WH})Sfb + |WY |2

]
,

where �{·} denotes the real part of a complex number. Approximating both Sfb and |WY |2 with the estimated

power spectrum Ŝfb0 of the initial image derived in (8), we have the estimate reconstruction error ε̂2:

ε̂2 ≈
∑
ωm∈I

∑
ωn∈I

[
(2− 2�{WH}) Ŝfb0

]
. (15)

The out-of-focus blur Ĥopt and the corresponding Wiener filter Ŵopt which result in the minimum ε̂2 value are
the optimal focus setting we desire. An optimal acquisition can be accomplished by capturing the scene using
the out-of-focus blur Ĥopt and recovering it by Ŵopt. The curves in Figure 2 depict the true and estimated
reconstruction errors vs. the PSF radius for one test scene. It is evident that an optimal focus setting exists and
our criterion tracks it as expected.

This criterion is automatically adapted to the power spectrum of the scene, which is estimated via the initially
captured image. Without mechanically moving the actual lens, a digital camera can evaluate the reconstruction
error for a specific scene using a look-up table which defines the PSF of the lens as a function of radius. Because
only the initial image y0 needs to be captured to find the optimal defocus setting, this criterion is appealing for
real-time applications.

5. SIMULATION AND RESULTS

In this section, we present some experimental results to verify the defocusing acquisition and evaluate the
performance of the criterion we proposed in Section 4. We chose 100 gray-scale images with size 512× 512 and
considered them as continuous scenes. The intensity values of these natural images are between 0 and 255. Each
image was subsampled by a factor of R in both directions to model the sampling processing. The resulting image
acquired by the proposed approach was evaluated by comparing it to the baseband image using mean square
error (MSE).
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(a) Baseband image (b) w/o Anti-aliasing (c) w/ Anti-aliasing (d) Proposed

Figure 3. The cropped Babara images acquired by different methods. The additive noise parameters are (k0, k1) = (2, 0.1)
and the downsampling rate R = 2.

In particular, we conducted simulation experiments as follows. The downsampling rate R was set to 2 and 4.
A 2× 2 averaging filter was added in the process as the sensor-size effect for the R = 2 case. A 4× 4 averaging
filter was chosen for the same purpose in the other case. The same filter as the sensor-size effect was used to
simulate the four-spot birefringent filter in different downsampling cases. The baseband image for each scene was
calculated using an ideal lowpass filter. Since the PSF of out-of-focus blur is close to circular,5 we implemented
defocusing using a circular blur with different radii r. The spatial region Ψ defined in Section 3 was set to
[−4, 4]× [−4, 4] to match the autocorrelation model. The initial image y0 was acquired using blur with r = 1.5
pixels. The blur radius at the minimum point of ε̂2 is the estimated optimal blur radius r̂opt.

The cropped Barbara images and a portion of one test image shown in Figure 3 and 4 depict different
acquisition methods. Both input images were downsampled by 2 and corrupted by signal-dependent noise with
parameters (k0, k1) = (2, 0.1). It is obvious that visual results are also noticeably improved compared to the
image acquired without any anti-aliasing filter, especially in regions with high-frequency patterns, such as the
pants in the Barbara image. Although the aliasing artifacts in the image acquired by the four-spot birefringent
filter have been largely reduced, the edges are blurrier than the image acquired by the proposed method. Figure
5 shows that similar performance also can be achieved when using a higher downsampling rate, such as R = 4.

Table 1 reports the performance of different acquisition approaches for different noise levels with k0 ∈
{1, 2, 4, 8} and k1 ∈ {0, 0.2}. The average MSE over 100 test scenes shows that the proposed acquisition method
outperforms traditional methods (with or without an anti-aliasing filter) at different noise levels. Images ac-
quired without an anti-aliasing filter have lower MSE values than images acquired with an anti-aliasing filter.
The reason is that the distortion produced by the anti-aliasing filter is increased more than the aliasing artifact
is reduced in terms of MSE.

To verify the accuracy of the criterion derived in Section 4, we compared the optimal radius r̂opt estimated
using this criterion with the true ropt for different scenes and noise levels. The mean absolute difference |ropt−r̂opt|

(a) Baseband image (b) w/o Anti-aliasing (c) w/ Anti-aliasing (d) Proposed

Figure 4. Portion of an image captured by different methods. The additive noise parameters are (k0, k1) = (2, 0.1) and
the downsampling rate R = 2.
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(a) Baseband image (b) w/o Anti-aliasing (c) w/ Anti-aliasing (d) Proposed

Figure 5. The comparison of captured Babara image with downsampling rate R = 4. The additive noise parameters are
(k0, k1) = (2, 0.1).

Table 1. Image acquisition methods compared using average MSE over 100 test scenes with different noise levels. The
downsampling rate are R = 2,4 and the additive noise settings are (k0, k1) = (8, 0), (8, 0.2), (4, 0), (4, 0.2), (2, 0), (2, 0.2),
(1, 0), (1, 0.2).

Sampling rate Method (8, 0) (8, 0.2) (4, 0) (4, 0.2) (2, 0) (2, 0.2) (1, 0) (1, 0.2)

R = 2
w/o Anti-aliasing 100.8 102.2 52.7 53.5 40.7 41.1 37.7 37.9
w/ Anti-aliasing 103.4 105.0 55.4 56.2 43.4 43.8 40.4 40.6

Proposed 74.9 75.6 39.2 40.1 22.8 23.6 14.7 15.5

R = 4
w/o Anti-aliasing 102.7 104.3 54.6 55.4 42.6 43.0 42.6 39.8
w/ Anti-aliasing 109.7 111.4 61.8 62.5 49.8 50.2 48.6 47.0

Proposed 83.8 84.9 44.1 45.0 25.6 26.6 16.9 17.3

in Table 2 for the downsampling-by-2 experiment is less than 0.35 pixels and the corresponding MSE loss ΔMSE

is less than 1.7, which demonstrate that the algorithm we have proposed is robust with respect to various
noise levels. When a higher downsampling rate is used (R = 4), the differences |ropt − r̂opt| increase when
(k0, k1) = (4, 0) and (4, 0.2). But the MSE losses are still small compared to the MSE improvement in Table 1.

6. CONCLUSION

In this paper, an optimal image acquisition approach is proposed. A new imaging model of defocusing acquisition
is definded which considers both aliasing and noise. A criterion to estimate the optimal focus setting for a specific
scene is derived. The model-based Wiener filter is used to minimize the end-to-end reconstruction errors during
the acquisition. Both the Wiener filter and the criterion are adapted to the power spectrum of the input scene.
Numerical and visual results show that the proposed approach outperforms traditional acquisition methods with
or without a fixed anti-aliasing filter. The proposed approach is robust with respect to various noise levels, and
it is practical in some cases to replace the commonly used four-spot birefringent filter by with this method. Our
future work will focus on color image defocusing acquisition, especially for single-sensor cameras.

Table 2. Evaluations of the criteria in Section 4 over 100 test scenes with different downsampling rate R = 2, 4 and
noise levels (k0, k1) = (8, 0), (8, 0.2), (4, 0), (4, 0.2), (2, 0), (2, 0.2), (1, 0), (1, 0.2). The unit of mean absolute difference
|ropt − r̂opt| is pixels.

Sampling rate Metric (8, 0) (8, 0.2) (4, 0) (4, 0.2) (2, 0) (2, 0.2) (1, 0) (1, 0.2)

R = 2
|ropt − r̂opt| 0.15 0.14 0.35 0.33 0.29 0.30 0.18 0.19

ΔMSE 1.47 1.34 1.67 1.67 1.23 1.21 0.69 0.78

R = 4
|ropt − r̂opt| 0.15 0.15 0.44 0.44 0.31 0.31 0.18 0.19

ΔMSE 0.95 0.92 2.31 2.31 1.86 1.91 1.22 1.16
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